论文标题
多体定位过渡的厄乳侧的异常动力学和随机培养基中定向聚合物的玻璃阶段
Anomalous dynamics in the ergodic side of the Many-Body Localization transition and the glassy phase of Directed Polymers in Random Media
论文作者
论文摘要
我们将伯特(Bethe)格子上的非互动安德森(Anderson)紧密结合模型作为多体量子动力学的玩具模型,我们提出了一种新颖且透明的理论解释,对异常缓慢的动力学进行了一种新的慢速动力学,该动力学在不良金属相中出现,该动力学在许多体体定位过渡之前。通过将多体波功能的时间与随机介质的定向聚合物映射到定向的聚合物上,我们显示了在延长的状态中存在玻璃过渡的存在,该玻璃过渡在小型疾病中分离了金属样相,在这些路径上发生了类似的路径,在不良金属样相的指数式路径上发生在中间疾病中,在这种情况下,在中间疾病中形成了稀有场所或依赖性的差异。从这张图片中出现的次扩散和非指数放松的物理解释与格里菲斯一家是互补的,尽管这两种情况都取决于逃生时代的重尾分布的存在。我们将玻璃相的动力学演变与定向聚合物的繁殖转变相关联,这会导致宏观和突然的跳跃,当能量之类的参数变化时,首选的离域途径的跳跃,并产生不同能源的特征能量之间重叠相关功能的单数行为。通过比较无环形树木上的量子动力学和随机的常规图,我们讨论了循环的效果,表明在后者的慢速动力学和明显的幂律中,在非常大的时间范围内延伸了,但最终在MBL过渡时差异的时间表上截止。
Using the non-interacting Anderson tight-binding model on the Bethe lattice as a toy model for the many-body quantum dynamics, we propose a novel and transparent theoretical explanation of the anomalously slow dynamics that emerges in the bad metal phase preceding the Many-Body Localization transition. By mapping the time-decorrelation of many-body wave-functions onto Directed Polymers in Random Media, we show the existence of a glass transition within the extended regime separating a metallic-like phase at small disorder, where delocalization occurs on an exponential number of paths, from a bad metal-like phase at intermediate disorder, where resonances are formed on rare, specific, disorder dependent site orbitals on very distant generations. The physical interpretation of subdiffusion and non-exponential relaxation emerging from this picture is complementary to the Griffiths one, although both scenarios rely on the presence of heavy-tailed distribution of the escape times. We relate the dynamical evolution in the glassy phase to the depinning transition of Directed Polymers, which results in macroscopic and abrupt jumps of the preferred delocalizing paths when a parameter like the energy is varied, and produce a singular behavior of the overlap correlation function between eigenstates at different energies. By comparing the quantum dynamics on loop-less Cayley trees and Random Regular Graphs we discuss the effect of loops, showing that in the latter slow dynamics and apparent power-laws extend on a very large time-window but are eventually cut-off on a time-scale that diverges at the MBL transition.