论文标题
$ \ ell_p $ -norm中的复合泊松近似值,用于弱依赖的向量的总和
Compound Poisson approximations in $\ell_p$-norm for sums of weakly dependent vectors
论文作者
论文摘要
通过多元化合物泊松分布和签名的复合泊松测量,可以近似具有坐标轴上支撑的1依赖性晶格向量的总和。局部和$ \ell_α$ - 纳米用于获得误差界。海因里希方法用于证明。
The distribution of the sum of 1-dependent lattice vectors with supports on coordinate axes is approximated by a multivariate compound Poisson distribution and by signed compound Poisson measure. The local and $\ell_α$-norms are used to obtain the error bounds. The Heinrich method is used for the proofs.