论文标题

希尔伯特几何形状中渐近测量学的凸角

Convexity of asymptotic geodesics in Hilbert Geometry

论文作者

Charitos, Charalampos, Papadoperakis, Ioannis, Tsapogas, Georgios

论文摘要

如果$ω$是$ \ mathbb {r}^{2} $和$ f,g $两个渐近地球的内饰,我们表明距离函数$ d \ left(f \ left(f \ left(t \ weft(t \ oright),g \ weft(t \ weft(t \ right))$ t $ to $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t tofly tofly t $ t。在情况下,在$ c^{2} $的情况下获得了相同的结果,并且在$ f \ left(\ infty \ right)= g \ left(\ infty \ right)$时,$ \ partialω$的曲率不会消失。提供了曲率假设的必要性的示例。

If $Ω$ is the interior of a convex polygon in $\mathbb{R}^{2}$ and $f,g$ two asymptotic geodesics, we show that the distance function $d\left(f\left(t\right),g\left(t\right)\right)$ is convex for $t$ sufficiently large. The same result is obtained in the case $\partial Ω$ is of class $C^{2}$ and the curvature of $\partial Ω$ at the point $f\left(\infty\right)=g\left(\infty\right) $ does not vanish. An example is provided for the necessity of the curvature assumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源