论文标题
具有Quantile Lipschitz的多量化回归时间序列模型,用于风能概率预测
A Multi-Quantile Regression Time Series Model with Interquantile Lipschitz Regularization for Wind Power Probabilistic Forecasting
论文作者
论文摘要
现代决策过程需要不确定性感知的模型,尤其是那些依靠非对称成本和规避风险的模型。这项工作的目的是为条件非参数分布函数(CDF)提出动态模型,以生成可再生生成时间序列的概率预测。为此,我们提出了一个由正规多量式回归(MQR)框架驱动的自适应非参数时间序列模型。在我们的方法中,所有回归模型都是通过单个线性优化问题共同估算的,该问题在多项式时间中找到了全局最佳参数。我们作品的创新特征是考虑到分位数系数的第一个系数衍生物的Lipschitz正则化,从而施加了系数平滑度。提出的正则化诱导了分位数之间的耦合效果,从而创建了具有改进样本外部性能的单个非参数CDF模型。来自巴西系统的现实风能生成数据的案例研究表明:1)正则化模型能够提高MQR概率预测的性能,而2)我们的MQR模型优于五个相关基准:两个基于MQR框架,三个基于参数模型,Sarima和Sarima和Beta和beta和weib cdf。
Modern decision-making processes require uncertainty-aware models, especially those relying on non-symmetric costs and risk-averse profiles. The objective of this work is to propose a dynamic model for the conditional non-parametric distribution function (CDF) to generate probabilistic forecasts for a renewable generation time series. To do that, we propose an adaptive non-parametric time-series model driven by a regularized multiple-quantile-regression (MQR) framework. In our approach, all regression models are jointly estimated through a single linear optimization problem that finds the global-optimal parameters in polynomial time. An innovative feature of our work is the consideration of a Lipschitz regularization of the first derivative of coefficients in the quantile space, which imposes coefficient smoothness. The proposed regularization induces a coupling effect among quantiles creating a single non-parametric CDF model with improved out-of-sample performance. A case study with realistic wind-power generation data from the Brazilian system shows: 1) the regularization model is capable to improve the performance of MQR probabilistic forecasts, and 2) our MQR model outperforms five relevant benchmarks: two based on the MQR framework, and three based on parametric models, namely, SARIMA, and GAS with Beta and Weibull CDF.