论文标题
noncompact $ \ mathbf {cp}^n $作为可整合系统的阶段空间
Noncompact $\mathbf{CP}^N$ as a phase space of superintegrable systems
论文作者
论文摘要
我们提出了具有动力学$ SO(1.2)$对称性的可整合模型的描述,以及振荡器和库仑系统的通用整合变形,就较高维度的klein模型(复杂投影空间的非compact类似物)而言,起着相位空间的作用。我们通过杀死定义Kähler结构的$ SU(n.1)$等法的电势来介绍这些系统运动常数的表达。
We propose the description of superintegrable models with dynamical $so(1.2)$ symmetry, and of the generic superintegrable deformations of oscillator and Coulomb systems in terms of higher-dimensional Klein model (the non-compact analog of complex projective space) playing the role of phase space. We present the expressions of the constants of motion of these systems via Killing potentials defining the $su(N.1)$ isometries of the Kähler structure.