论文标题
分形边界域的线性和非线性波方程的混合边界值问题
Mixed boundary valued problem for linear and nonlinear wave equations in domains with fractal boundaries
论文作者
论文摘要
强烈抑制线性波方程和非线性westervelt方程的弱拟合良好性,在最大的自然sobolev sobolev可允许的非平滑域中证明了弱湿的线性波动方程。在r^2或r^3中均匀域的框架中,我们还使用相应的变异形式的MOSCO收敛性,通过溶液对溶液在分形域上的溶液近似。
The weak well-posedness, with the mixed boundary conditions, of the strongly damped linear wave equation and of the non linear Westervelt equation is proved in the largest natural class of Sobolev admissible non-smooth domains. In the framework of uniform domains in R^2 or R^3 we also validate the approximation of the solution of the Wester-velt equation on a fractal domain by the solutions on the prefractals using the Mosco convergence of the corresponding variational forms.