论文标题

fermions的路径积分分子动力学:减轻Bogoliubov不平等的标志问题

Path Integral Molecular Dynamics for Fermions: Alleviating the Sign Problem with the Bogoliubov Inequality

论文作者

Hirshberg, Barak, Invernizzi, Michele, Parrinello, Michele

论文摘要

我们提出了一种对费米子进行路径积分分子动力学(PIMD)模拟并解决其符号问题的方法。 PIMD模拟广泛用于研究热平衡处的多体量子系统。但是,他们认为颗粒是可区分的,并且忽略了骨气和费米子交换效应。相互作用的费米子在许多化学和物理系统中起着关键作用,例如量子点中的电子和超低原子。使用PIMD,不可能对费米子分区函数进行直接采样,因为其积分不是正定的。我们表明,通过采用我们最近开发的玻感PIMD方法并将结果重新加权以获得费米子期望值,可以为费米子提供PIMD模拟。该方法针对在二维量子点中最多7个电子的路径积分蒙特卡洛(PIMC)模拟进行了测试。但是,像PIMC一样,该方法在低温下遇到了符号问题。我们提出了一种简单的方法来通过模拟具有较大平均符号的辅助系统,并使用Bogoliubov不平等获得与原始系统的能量获得上限。这允许在三电子量子点的情况下使用PIMD在低于原本可行的温度下研究费米子。我们的结果扩展了Fermions PIMD模拟的界限,并有望刺激解决标志问题的新方法的发展。

We present a method for performing path integral molecular dynamics (PIMD) simulations for fermions and address its sign problem. PIMD simulations are widely used for studying many-body quantum systems at thermal equilibrium. However, they assume that the particles are distinguishable and neglect bosonic and fermionic exchange effects. Interacting fermions play a key role in many chemical and physical systems, such as electrons in quantum dots and ultracold trapped atoms. A direct sampling of the fermionic partition function is impossible using PIMD since its integrand is not positive definite. We show that PIMD simulations for fermions are feasible by employing our recently developed method for bosonic PIMD and reweighting the results to obtain fermionic expectation values. The approach is tested against path integral Monte Carlo (PIMC) simulations for up to 7 electrons in a two-dimensional quantum dot for a range of interaction strengths. However, like PIMC, the method suffers from the sign problem at low temperatures. We propose a simple approach for alleviating it by simulating an auxiliary system with a larger average sign and obtaining an upper bound to the energy of the original system using the Bogoliubov inequality. This allows fermions to be studied at temperatures lower than would otherwise have been feasible using PIMD, as demonstrated in the case of a three-electron quantum dot. Our results extend the boundaries of PIMD simulations of fermions and will hopefully stimulate the development of new approaches for tackling the sign problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源