论文标题
约翰逊图的公平2派its和第二个特征值
Equitable 2-partitions of Johnson graphs with the second eigenvalue
论文作者
论文摘要
我们研究了约翰逊图J(n,w)的公平2派it,其中包含特征值lambda_2(w,n)=(w-2)(n-w-2)(n-w-2)-2 -2的商矩阵。对于任何W> = 4和N> = 2W,我们找到了此类分区的所有可接受的商矩阵,并表征W> = 4,N> 2W的所有这些分区,以及W> = 7,n = 2W,最高等效。
We study equitable 2-partitions of the Johnson graphs J(n,w) with a quotient matrix containing the eigenvalue lambda_2(w,n) = (w-2)(n-w-2)-2 in its spectrum. For any w>=4 and n>=2w, we find all admissible quotient matrices of such partitions, and characterize all these partitions for w>=4, n>2w, and for w>=7, n = 2w, up to equivalence.