论文标题

概括相对论量化条件以包括所有三杆子同胞通道

Generalizing the relativistic quantization condition to include all three-pion isospin channels

论文作者

Hansen, Maxwell T., Romero-López, Fernando, Sharpe, Stephen R.

论文摘要

我们提出了相对论,有限体积的三粒子量化条件的概括,这些条件是异构对称QCD中非相同亲的概括。由此产生的形式主义允许使用晶状体QCD确定的离散有限体积能量来约束所有可能的两个和三杆子同源物值的散射幅度。至于先前考虑的相同普力的情况,结果将两个步骤分为两个步骤:第一个定义具有等于允许能量的根的非扰动功能,$ e_n(l)$,在给定的立方卷中,带有侧面长度$ l $。此功能取决于中间三体数量,表示为$ \ mathcal {k} _ {\ mathrm {df},3} $,因此可以从晶格QCD输入中限制。第二步是将$ \ mathcal {k} _ {\ mathrm {df},3} $与物理散射幅度,$ \ mathcal m_3 $相关的整体方程组。这两个关键关系,$ e_n(l)\ leftrightArrow \ Mathcal {k} _ {\ Mathrm {df},3} $和$ \ Mathcal {k} _ {\ Mathrm {\ Mathrm {df}三杆子isospin,$ i_ {πππ} $,因此实际上一个恢复了四个独立关系,对应于$ i_ {πππ} = 0,1,2,3 $。我们还为所有通道提供了$ \ Mathcal {k} _ {\ Mathrm {df},3} $的广义阈值扩展,以及所有三杆子共振的参数,用于$ i_ {πππ} = 0 $和$ i_和$ i_ {y_ i_ {πππ} = 1 $ $。作为广义形式主义实用程序的一个例子,我们提出了$ i_ {πππ} = 0 $的量化条件的玩具实现,重点是$ω$和$ h_1 $共振的量子数。

We present a generalization of the relativistic, finite-volume, three-particle quantization condition for non-identical pions in isosymmetric QCD. The resulting formalism allows one to use discrete finite-volume energies, determined using lattice QCD, to constrain scattering amplitudes for all possible values of two- and three-pion isospin. As for the case of identical pions considered previously, the result splits into two steps: The first defines a non-perturbative function with roots equal to the allowed energies, $E_n(L)$, in a given cubic volume with side-length $L$. This function depends on an intermediate three-body quantity, denoted $\mathcal{K}_{\mathrm{df},3}$, which can thus be constrained from lattice QCD input. The second step is a set of integral equations relating $\mathcal{K}_{\mathrm{df},3}$ to the physical scattering amplitude, $\mathcal M_3$. Both of the key relations, $E_n(L) \leftrightarrow \mathcal{K}_{\mathrm{df},3}$ and $\mathcal{K}_{\mathrm{df},3}\leftrightarrow \mathcal M_3$, are shown to be block-diagonal in the basis of definite three-pion isospin, $I_{πππ}$, so that one in fact recovers four independent relations, corresponding to $I_{πππ}=0,1,2,3$. We also provide the generalized threshold expansion of $\mathcal{K}_{\mathrm{df},3}$ for all channels, as well as parameterizations for all three-pion resonances present for $I_{πππ}=0$ and $I_{πππ}=1$. As an example of the utility of the generalized formalism, we present a toy implementation of the quantization condition for $I_{πππ}=0$, focusing on the quantum numbers of the $ω$ and $h_1$ resonances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源