论文标题
用于单图像的多尺度渐进式融合网络
Multi-Scale Progressive Fusion Network for Single Image Deraining
论文作者
论文摘要
由于与相机的位置不同,空气中的雨条以各种模糊程度和分辨率出现。在雨图像及其多尺度(或多分辨率)版本中也可以看到类似的降雨模式,这使得可以利用此类互补信息来降雨条纹表示。在这项工作中,我们从输入图像量表和统一框架中的分层深度特征的角度探索了雨条的多尺度协作表示形式,称为多尺度的渐进式融合网络(MSPFN),用于删除单图像雨条。对于不同位置的类似雨条,我们采用经常计算来捕获全局纹理,从而允许探索空间维度的互补和冗余信息,以表征目标雨条纹。此外,我们构建了多尺度金字塔结构,并进一步介绍了注意机制,以指导来自不同尺度的相关信息的精细融合。这种多尺度的渐进式融合策略不仅促进了合作的代表,而且可以提高端到端培训。我们提出的方法在几个基准数据集上进行了广泛的评估,并实现了最先进的结果。此外,我们对关节驱动,检测和分割任务进行实验,并激发视力任务驱动图像的新研究方向。源代码可在\ url {https://github.com/kuihua/mspfn}中获得。
Rain streaks in the air appear in various blurring degrees and resolutions due to different distances from their positions to the camera. Similar rain patterns are visible in a rain image as well as its multi-scale (or multi-resolution) versions, which makes it possible to exploit such complementary information for rain streak representation. In this work, we explore the multi-scale collaborative representation for rain streaks from the perspective of input image scales and hierarchical deep features in a unified framework, termed multi-scale progressive fusion network (MSPFN) for single image rain streak removal. For similar rain streaks at different positions, we employ recurrent calculation to capture the global texture, thus allowing to explore the complementary and redundant information at the spatial dimension to characterize target rain streaks. Besides, we construct multi-scale pyramid structure, and further introduce the attention mechanism to guide the fine fusion of this correlated information from different scales. This multi-scale progressive fusion strategy not only promotes the cooperative representation, but also boosts the end-to-end training. Our proposed method is extensively evaluated on several benchmark datasets and achieves state-of-the-art results. Moreover, we conduct experiments on joint deraining, detection, and segmentation tasks, and inspire a new research direction of vision task-driven image deraining. The source code is available at \url{https://github.com/kuihua/MSPFN}.