论文标题

schrödinger方程系统具有一般二次型非线性的爆破解决方案,五个和六个

Blow-up solutions for a system of Schrödinger equations with general quadratic-type nonlinearities in dimensions five and six

论文作者

Noguera, Norman, Pastor, Ademir

论文摘要

在这项工作中,我们展示了非线性schrödinger方程的$ L $组件系统的基础态解决方案的存在,并在二次型中增长了。他们获得了分析关键的Sobolev型不平等和使用浓度 - 触觉方法的临界方法。作为一种应用,我们证明了系统的爆炸解决方案,而当初始数据是径向时,在第六(和五个)中没有质量共振条件。

In this work, we show the existence of ground state solutions for an $l$-component system of non-linear Schrödinger equations with quadratic-type growth interactions in the energy-critical case. They are obtained analyzing a critical Sobolev-type inequality and using the concentration-compactness method. As an application, we prove the existence of blow-up solutions of the system without the mass-resonance condition in dimension six (and five), when the initial data is radial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源