论文标题

设置系统爆炸

Set System Blowups

论文作者

Alweiss, Ryan

论文摘要

我们证明,给定一个常数$ k \ ge 2 $和一个大的集合系统$ \ nathcal {f} $的大小最多,最多是$ w $,一种典型的$ k $ -k $ -k $ - sets $(s_1,\ cdots,s_k)$的$ \ \ \ \ \ \ \ \ mathcal {f} $都可以从$ ne $ a ply s plance plance up le he w we le le le, $ \ Mathcal {f} _i $包含$ s_i $,因此对于$ i \ neq j $,如果$ t_i \ in \ Mathcal {f} _i $ $ $ $ t_i $和$ t_j \ in \ in \ nathcal {f}向日葵猜想的版本与原始的答案相同,最多是指数因素。

We prove that given a constant $k \ge 2$ and a large set system $\mathcal{F}$ of sets of size at most $w$, a typical $k$-tuple of sets $(S_1, \cdots, S_k)$ from $\mathcal{F}$ can be ``blown up" in the following sense: for each $1 \le i \le k$, we can find a large subfamily $\mathcal{F}_i$ containing $S_i$ so that for $i \neq j$, if $T_i \in \mathcal{F}_i$ and $T_j \in \mathcal{F}_j$ , then $T_i \cap T_j=S_i \cap S_j$. We also show that the answer to the multicolor version of the sunflower conjecture is the same as the answer for the original, up to an exponential factor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源