论文标题

强大的随机贝叶斯游戏用于行为空间覆盖

Robust Stochastic Bayesian Games for Behavior Space Coverage

论文作者

Bernhard, Julian, Knoll, Alois

论文摘要

多代理系统中的一个主要挑战是设计智能代理的设计解决现实世界任务是与其他代理(例如人类)密切互动的,从而面临着各种行为变化和对观察到的代理人真实行为的有限知识。由于使用有限的假设进行行为预测,缺乏假设设计过程,可确保对所有行为变化的覆盖范围和样本联系效率,在建模持续的行为变化时,缺乏假设设计过程,因此存在解决这一挑战的现有作品的实用性受到限制。在这项工作中,我们基于强大的随机贝叶斯游戏(RSBGS)的新框架提出了一种应对这一挑战的方法。 RSBG通过划分其他药物的物理可行,连续行为空间来定义假设。它结合了强大的马尔可夫决策过程(RMDP)和随机贝叶斯游戏(SBG)的最佳标准,以指数级降低样本复杂性,以通过在连续行为空间上定义的假设集进行计划。我们的方法在两个实验中的基线算法优于建模时变意图和较大的多维行为空间的基线算法,同时实现了与计划者相同的性能,并了解其他代理的真实行为。

A key challenge in multi-agent systems is the design of intelligent agents solving real-world tasks in close interaction with other agents (e.g. humans), thereby being confronted with a variety of behavioral variations and limited knowledge about the true behaviors of observed agents. The practicability of existing works addressing this challenge is being limited due to using finite sets of hypothesis for behavior prediction, the lack of a hypothesis design process ensuring coverage over all behavioral variations and sample-inefficiency when modeling continuous behavioral variations. In this work, we present an approach to this challenge based on a new framework of Robust Stochastic Bayesian Games (RSBGs). An RSBG defines hypothesis sets by partitioning the physically feasible, continuous behavior space of the other agents. It combines the optimality criteria of the Robust Markov Decision Process (RMDP) and the Stochastic Bayesian Game (SBG) to exponentially reduce the sample complexity for planning with hypothesis sets defined over continuous behavior spaces. Our approach outperforms the baseline algorithms in two experiments modeling time-varying intents and large multidimensional behavior spaces, while achieving the same performance as a planner with knowledge of the true behaviors of other agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源