论文标题
用于关节对象检测和观点估计的圆柱卷积网络
Cylindrical Convolutional Networks for Joint Object Detection and Viewpoint Estimation
论文作者
论文摘要
在深卷积神经网络中编码空间不变性的现有技术仅模型2D变换字段。这并不能说明2D空间中的对象是3D的投影,因此它们具有严重的对象观点变化的能力有限。为了克服这一限制,我们引入了一个可学习的模块,圆柱卷积网络(CCN),该模块利用了3D空间中定义的卷积内核的圆柱表示。 CCN通过特定于视图的卷积内核提取特定视图的功能,以预测每个视点处的对象类别得分。使用特定于视图的特征,我们使用所提出的正弦软弧模块同时确定目标类别和观点。我们的实验证明了圆柱卷积网络对联合对象检测和观点估计的有效性。
Existing techniques to encode spatial invariance within deep convolutional neural networks only model 2D transformation fields. This does not account for the fact that objects in a 2D space are a projection of 3D ones, and thus they have limited ability to severe object viewpoint changes. To overcome this limitation, we introduce a learnable module, cylindrical convolutional networks (CCNs), that exploit cylindrical representation of a convolutional kernel defined in the 3D space. CCNs extract a view-specific feature through a view-specific convolutional kernel to predict object category scores at each viewpoint. With the view-specific feature, we simultaneously determine objective category and viewpoints using the proposed sinusoidal soft-argmax module. Our experiments demonstrate the effectiveness of the cylindrical convolutional networks on joint object detection and viewpoint estimation.