论文标题
致密偶极硬球液体的动力学理论和剪切粘度
Kinetic theory and shear viscosity of dense dipolar hard sphere liquids
论文作者
论文摘要
致密流体的运输特性在根本上是具有挑战性的,因为不能应用平衡统计物理的强大方法。极性流体加剧了这个问题,因为远程相互作用排除了仅基于硬球的简单效应直径方法的使用。在这里,我们开发了一种对偶性硬球体流体的动力学理论,该理论有效至高密度。我们从状态方程直接得出接触时的径向分布函数的数学近似,并使用它来获得剪切粘度。我们还对该系统进行了分子动力学模拟,并以数值方式提取剪切粘度。理论结果与模拟相比有利。
Transport properties of dense fluids are fundamentally challenging, because the powerful approaches of equilibrium statistical physics cannot be applied. Polar fluids compound this problem, because the long-range interactions preclude the use of a simple effect-diameter approach based solely on hard spheres. Here, we develop a kinetic theory for dipolar hard-sphere fluids that is valid up to high density. We derive a mathematical approximation for the radial distribution function at contact directly from the equation of state, and use it to obtain the shear viscosity. We also perform molecular-dynamics simulations of this system and extract the shear viscosity numerically. The theoretical results compare favorably to the simulations.