论文标题
由于dzyaloshinskii-moriya相互作用,非共线磁体中的自旋波的非交流性
Nonreciprocity of spin waves in noncollinear magnets due to the Dzyaloshinskii-Moriya interaction
论文作者
论文摘要
断裂的反转对称性与自旋轨道相互作用相结合产生有限的Dzyaloshinskii-Moriya相互作用(DMI),可以诱导手性质的非共线自旋纹理。 DMI的特征是相互作用向量,其大小,方向和对称性对于确定各种自旋纹理的稳定性,例如天空和旋转螺旋。 DMI可以从铁磁体中的自旋波的非近代性测量,可以通过非弹性散射实验探测。在Ferromagnet中,DMI可以修改自旋波分散体,从$γ$点移动最小。然后,用相反波形传播的自旋波的特征是不同的组速度,能量和寿命,从而定义了它们的非注射性。在这里,我们解决了复杂的自旋纹理的情况,在这种情况下,DMI诱导的手性不对称的表现仍有待探索。我们讨论了这种非邻次效应,并提出了在自旋偏振或自旋分辨的非弹性散射实验的背景下访问DMI向量的大小和方向的方法。我们表明,只有当周期性磁系统具有有限的净磁化时,也就是说,当所有磁矩的矢量总和为非零时,它才能呈现总非偏置自旋波谱。然而,即使是零网络磁化系统,例如共线抗铁磁铁和循环自旋螺旋,也可以具有单独非偏置的自旋波模式,而总光谱仍然保持倒数。
Broken inversion symmetry in combination with the spin-orbit interaction generates a finite Dzyaloshinskii-Moriya interaction (DMI), which can induce noncollinear spin textures of chiral nature. The DMI is characterized by an interaction vector whose magnitude, direction and symmetries are crucial to determine the stability of various spin textures, such as skyrmions and spin spirals. The DMI can be measured from the nonreciprocity of spin waves in ferromagnets, which can be probed via inelastic scattering experiments. In a ferromagnet, the DMI can modify the spin-wave dispersion, moving its minimum away from the $Γ$ point. Spin waves propagating with opposite wavevectors are then characterized by different group velocities, energies and lifetimes, defining their nonreciprocity. Here, we address the case of complex spin textures, where the manifestation of DMI-induced chiral asymmetries remains to be explored. We discuss such nonreciprocal effects and propose ways of accessing the magnitude and direction of the DMI vectors in the context of spin-polarized or spin-resolved inelastic scattering experiments. We show that only when a periodic magnetic system has finite net magnetization, that is, when the vector sum of all magnetic moments is nonzero, can it present a total nonreciprocal spin-wave spectrum. However, even zero-net-magnetization systems, such as collinear antiferromagnets and cycloidal spin spirals, can have spin-wave modes that are individually nonreciprocal, while the total spectrum remains reciprocal.