论文标题

几何图案匹配可减少到k-sum

Geometric Pattern Matching Reduces to k-SUM

论文作者

Aronov, Boris, Cardinal, Jean

论文摘要

我们证明,当模式具有固定尺寸$ k $时,线性时间的一些确切的几何图案匹配问题将线性时间降低至$ k $ -sum。这是在真正的RAM型号中搜索一组$ k \ geq 3 $点的类似副本,在飞机上的$ n $点内,并在$ d $ space中的一组$ n $点中搜索一组$ k \ geq d+2 $点的仿射图像。 作为推论,我们为这两个问题获得了改进的实际RAM算法和决策树。特别是,可以通过近线性高度的代数决策树来解决它们。

We prove that some exact geometric pattern matching problems reduce in linear time to $k$-SUM when the pattern has a fixed size $k$. This holds in the real RAM model for searching for a similar copy of a set of $k\geq 3$ points within a set of $n$ points in the plane, and for searching for an affine image of a set of $k\geq d+2$ points within a set of $n$ points in $d$-space. As corollaries, we obtain improved real RAM algorithms and decision trees for the two problems. In particular, they can be solved by algebraic decision trees of near-linear height.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源