论文标题

图表上的几个极端问题,涉及圆周,周长和双曲线常数

Several extremal problems on graphs involving the circumference, girth, and hyperbolicity constant

论文作者

Hernandez, Veronica, Pestana, Domingo, Rodriguez, Jose M.

论文摘要

要计算双曲线常数是一个几乎棘手的问题,因此自然而然地尝试根据图的某些参数绑定它是很自然的。令$ \ Mathcal {g}(g,c,n)$为Girth $ g(g)= G $,圆周$ c(g)= c $和$ n $ vertices;并让$ \ Mathcal {h}(g,c,m)$是带有围墙$ g $,圆周$ c $和$ m $ edge的一组图表。在这项工作中,我们研究了图上的四个极端问题:$ a(g,c,n)= \ min \ {δ(g)\,| \; g \ in \ Mathcal {g}(g,c,n)\} $,$ b(g,c,n)= \ max \ {δ(g)\,\,| \; g \ in \ Mathcal {g}(g,c,n)\} $,$α(g,c,m)= \ min \ {δ(g)\,\,| \; \ in \ Mathcal {h}(g,c,m)\} $和$β(g,c,m)= \ max \ {δ(g)\,\,| \; g \ in \ Mathcal {h}(g,c,m)\} $。特别是,我们获得了$ a(g,c,n)$和$α(g,c,m)$的界限,并计算$ b(g,c,c,n)$和$β(g,c,m)$的精确值的所有$ g $,$ c $,$ c $,$ n $ and $ n $和$ m $。

To compute the hyperbolicity constant is an almost intractable problem, thus it is natural to try to bound it in terms of some parameters of the graph. Let $\mathcal{G}(g,c,n)$ be the set of graphs $G$ with girth $g(G)=g$, circumference $c(G)=c$, and $n$ vertices; and let $\mathcal{H}(g,c,m)$ be the set of graphs with girth $g$, circumference $c$, and $m$ edges. In this work, we study the four following extremal problems on graphs: $A(g,c,n)=\min\{δ(G)\,|\; G \in \mathcal{G}(g,c,n) \}$, $B(g,c,n)=\max\{δ(G)\,|\; G \in \mathcal{G}(g,c,n) \}$, $α(g,c,m)=\min\{δ(G)\,|\; \in \mathcal{H}(g,c,m) \}$ and $β(g,c,m)=\max\{δ(G)\,|\; G \in \mathcal{H}(g,c,m) \}$. In particular, we obtain bounds for $A(g,c,n)$ and $α(g,c,m)$, and we compute the precise value of $B(g,c,n)$ and $β(g,c,m)$ for all values of $g$, $c$, $n$ and $m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源