论文标题

sobolev不平等现象,凸锥上具有共同凹的重量

Sobolev inequalities with jointly concave weights on convex cones

论文作者

Balogh, Zoltán M., Gutiérrez, Cristian E., Kristály, Alexandru

论文摘要

使用最佳的质量传输参数,我们证明了形式的加权sobolev不等式(\ int_e | u(x)|^q \,ω(x)\,dx \ right)^{1/q} \ leq k_0 u(x)|^p\,σ(x)\,dx\right)^{1/p},\ \ u\in C_0^\infty(\mathbb R^n),\ \ \ \ \ \ {\rm (WSI)}\] where $p\geq 1$ and $q>0$ is the corresponding Sobolev critical exponent.这里$ e \ subseteq \ mathbb r^n $是一个开放式凸锥,$ω,σ:e \ to(0,\ infty)$是两个均质权重,验证一般的凹入式结构状态。常数$ k_0 = k_0(n,p,q,ω,σ)> 0 $由显式公式给出。在权重的轻度规律性假设下,我们还证明$ k_0 $在(WSI)中是最佳的,并且仅当$ω$和$σ$等于乘法因子时。我们的陈述涵盖了一些先前已知的结果,包括单一重量和径向重量的病例。还提供了对PDE的进一步示例和申请。

Using optimal mass transport arguments, we prove weighted Sobolev inequalities of the form \[\left(\int_E |u(x)|^q\,ω(x) \,dx\right)^{1/q}\leq K_0\,\left(\int_E |\nabla u(x)|^p\,σ(x)\,dx\right)^{1/p},\ \ u\in C_0^\infty(\mathbb R^n),\ \ \ \ \ \ {\rm (WSI)}\] where $p\geq 1$ and $q>0$ is the corresponding Sobolev critical exponent. Here $E\subseteq \mathbb R^n$ is an open convex cone, and $ω,σ:E\to (0,\infty)$ are two homogeneous weights verifying a general concavity-type structural condition. The constant $K_0= K_0(n, p, q, ω, σ) >0$ is given by an explicit formula. Under mild regularity assumptions on the weights, we also prove that $K_0$ is optimal in (WSI) if and only if $ω$ and $σ$ are equal up to a multiplicative factor. Several previously known results, including the cases for monomials and radial weights, are covered by our statement. Further examples and applications to PDEs are also provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源