论文标题

轻巧的光度立体声用于面部细节恢复

Lightweight Photometric Stereo for Facial Details Recovery

论文作者

Wang, Xueying, Guo, Yudong, Deng, Bailin, Zhang, Juyong

论文摘要

最近,来自单个图像的3D面重建在深度学习和先验知识的帮助下取得了巨大的成功,但它们通常无法产生准确的几何细节。另一方面,光度立体声方法可以恢复可靠的几何细节,但需要致密的输入,并且需要解决复杂的优化问题。在本文中,我们提出了一种轻巧的策略,该策略仅需要稀疏的输入,甚至只需要一个图像即可恢复高保真的面部形状,并在近场灯下捕获的图像。为此,我们构建了一个数据集,该数据集包含84位不同的受试者,并在3个不同的灯光下具有29个表达式。数据增强用于在身份,照明,表达等多样性方面丰富数据。在此构造的数据集中,我们提出了一个新型的神经网络,专门设计用于基于光度立体的3D面部重建。广泛的实验和比较表明,我们的方法可以产生高质量的重建结果,其中一到三个面部图像在近场灯下捕获。我们的完整框架可在https://github.com/juyong/facepsnet上找到。

Recently, 3D face reconstruction from a single image has achieved great success with the help of deep learning and shape prior knowledge, but they often fail to produce accurate geometry details. On the other hand, photometric stereo methods can recover reliable geometry details, but require dense inputs and need to solve a complex optimization problem. In this paper, we present a lightweight strategy that only requires sparse inputs or even a single image to recover high-fidelity face shapes with images captured under near-field lights. To this end, we construct a dataset containing 84 different subjects with 29 expressions under 3 different lights. Data augmentation is applied to enrich the data in terms of diversity in identity, lighting, expression, etc. With this constructed dataset, we propose a novel neural network specially designed for photometric stereo based 3D face reconstruction. Extensive experiments and comparisons demonstrate that our method can generate high-quality reconstruction results with one to three facial images captured under near-field lights. Our full framework is available at https://github.com/Juyong/FacePSNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源