论文标题
通过近端政策优化获得AC OPF解决方案,以进行安全和经济网格操作
Deriving AC OPF Solutions via Proximal Policy Optimization for Secure and Economic Grid Operation
论文作者
论文摘要
最佳功率流(OPF)是电力系统中非常基本但至关重要的优化问题,旨在解决特定的目标函数(例如:发电机成本),同时将系统保持在稳定且安全的操作中。在本文中,我们采用了开始的人工智能(AI)技术来训练旨在解决AC OPF问题的代理,其中考虑了非线性功率平衡方程。修改后的IEEE-14总线系统用于验证所提出的方法。测试结果表明,在电力系统操作中采用AI技术的巨大潜力。
Optimal power flow (OPF) is a very fundamental but vital optimization problem in the power system, which aims at solving a specific objective function (ex.: generator costs) while maintaining the system in the stable and safe operations. In this paper, we adopted the start-of-the-art artificial intelligence (AI) techniques to train an agent aiming at solving the AC OPF problem, where the nonlinear power balance equations are considered. The modified IEEE-14 bus system were utilized to validate the proposed approach. The testing results showed a great potential of adopting AI techniques in the power system operations.