论文标题

通过近端政策优化获得AC OPF解决方案,以进行安全和经济网格操作

Deriving AC OPF Solutions via Proximal Policy Optimization for Secure and Economic Grid Operation

论文作者

Zhou, Yuhao, Zhang, Bei, Xu, Chunlei, Lan, Tu, Diao, Ruisheng, Shi, Di, Wang, Zhiwei, Lee, Wei-Jen

论文摘要

最佳功率流(OPF)是电力系统中非常基本但至关重要的优化问题,旨在解决特定的目标函数(例如:发电机成本),同时将系统保持在稳定且安全的操作中。在本文中,我们采用了开始的人工智能(AI)技术来训练旨在解决AC OPF问题的代理,其中考虑了非线性功率平衡方程。修改后的IEEE-14总线系统用于验证所提出的方法。测试结果表明,在电力系统操作中采用AI技术的巨大潜力。

Optimal power flow (OPF) is a very fundamental but vital optimization problem in the power system, which aims at solving a specific objective function (ex.: generator costs) while maintaining the system in the stable and safe operations. In this paper, we adopted the start-of-the-art artificial intelligence (AI) techniques to train an agent aiming at solving the AC OPF problem, where the nonlinear power balance equations are considered. The modified IEEE-14 bus system were utilized to validate the proposed approach. The testing results showed a great potential of adopting AI techniques in the power system operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源