论文标题
接触伪型歧管,满足无效条件
On contact pseudo-metric manifolds satisfying a nullity condition
论文作者
论文摘要
在本文中,我们旨在介绍和研究$(κ,μ)$ - 与伪金属歧管联系,并证明,如果$ m $的任何点的$φ$ - 截面曲率独立于$ m $的选择,那么它在$ m $上是恒定的,并且相应地是弯曲的tensor。此外,我们引入了广义$(κ,μ)$ - 联系伪金属歧管,并以$ n> 1 $的形式证明,非西萨基人通用$(κ,μ)$ - 接触伪型歧管是$(κ,μ)$ - 与Pseudo-metric歧管联系。
In this paper, we aim to introduce and study $(κ, μ)$-contact pseudo-metric manifold and prove that if the $φ$-sectional curvature of any point of $M$ is independent of the choice of $φ$-section at the point, then it is constant on $M$ and accordingly the curvature tensor. Also, we introduce generalized $(κ, μ)$-contact pseudo-metric manifold and prove for $n>1$, that a non-Sasakian generalized $(κ, μ)$-contact pseudo-metric manifold is a $(κ, μ)$-contact pseudo-metric manifold.