论文标题

与播种的迭代学习来对抗语言漂移

Countering Language Drift with Seeded Iterated Learning

论文作者

Lu, Yuchen, Singhal, Soumye, Strub, Florian, Pietquin, Olivier, Courville, Aaron

论文摘要

对人类语料库进行预处理,然后在模拟器中进行填充已成为训练面向目标对话的代理商的标准管道。然而,一旦代理人对任务完成最大化,他们就会遭受所谓的语言漂移现象的困扰:他们逐渐失去语言的句法和语义属性,因为他们只专注于解决任务。在本文中,我们提出了一种通用的方法来对抗语言漂移,称为种子迭代学习(SIL)。我们通过模仿新生成的教师代理人采样的数据,定期改善据预定的学生代理商。在每个时间步骤中,教师都是通过复制学生代理来创建的,然后进行填充以最大化任务完成。 SIL不需要外部的句法约束或语义知识,这使其成为有价值的任务不合时宜的芬太尼协议。我们在玩具设定的刘易斯游戏中评估SIL,然后用自然语言将其扩展到翻译游戏。在这两种情况下,SIL都可以帮助反语言漂移,并改善与基线相比的任务完成。

Pretraining on human corpus and then finetuning in a simulator has become a standard pipeline for training a goal-oriented dialogue agent. Nevertheless, as soon as the agents are finetuned to maximize task completion, they suffer from the so-called language drift phenomenon: they slowly lose syntactic and semantic properties of language as they only focus on solving the task. In this paper, we propose a generic approach to counter language drift called Seeded iterated learning (SIL). We periodically refine a pretrained student agent by imitating data sampled from a newly generated teacher agent. At each time step, the teacher is created by copying the student agent, before being finetuned to maximize task completion. SIL does not require external syntactic constraint nor semantic knowledge, making it a valuable task-agnostic finetuning protocol. We evaluate SIL in a toy-setting Lewis Game, and then scale it up to the translation game with natural language. In both settings, SIL helps counter language drift as well as it improves the task completion compared to baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源