论文标题

通过对抗性学习从用户项目交互数据中挖掘隐性实体偏好

Mining Implicit Entity Preference from User-Item Interaction Data for Knowledge Graph Completion via Adversarial Learning

论文作者

He, Gaole, Li, Junyi, Zhao, Wayne Xin, Liu, Peiju, Wen, Ji-Rong

论文摘要

知识图完成(KGC)的任务旨在自动推断知识图(KG)中缺少的事实信息。在本文中,我们采用了一个新的视角,旨在利用丰富的用户交互数据(用户交互数据)来改进KGC任务。我们的工作灵感来自于观察到许多KG实体对应于应用系统中的在线项目的观察。但是,两种数据源具有非常不同的内在特征,并且可能会使用简单的融合策略损害原始性能。为了应对这一挑战,我们通过利用用户交互数据来完成KGC任务来提出一种新颖的对抗学习方法。我们的发电机与用户交互数据隔离,并用于提高歧视器的性能。鉴别器从用户交互数据中获取有用的有用信息作为输入,并逐渐增强了评估能力,以确定发电机生成的假样品。为了发现用户的隐式实体偏好,我们根据图神经网络设计了精心设计的协作学习算法,该算法将与歧视器共同优化。这种方法可有效缓解有关KGC任务的数据异质性和语义复杂性的问题。在三个现实世界数据集上进行的广泛实验证明了我们方法对KGC任务的有效性。

The task of Knowledge Graph Completion (KGC) aims to automatically infer the missing fact information in Knowledge Graph (KG). In this paper, we take a new perspective that aims to leverage rich user-item interaction data (user interaction data for short) for improving the KGC task. Our work is inspired by the observation that many KG entities correspond to online items in application systems. However, the two kinds of data sources have very different intrinsic characteristics, and it is likely to hurt the original performance using simple fusion strategy. To address this challenge, we propose a novel adversarial learning approach by leveraging user interaction data for the KGC task. Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator. The discriminator takes the learned useful information from user interaction data as input, and gradually enhances the evaluation capacity in order to identify the fake samples generated by the generator. To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks, which will be jointly optimized with the discriminator. Such an approach is effective to alleviate the issues about data heterogeneity and semantic complexity for the KGC task. Extensive experiments on three real-world datasets have demonstrated the effectiveness of our approach on the KGC task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源