论文标题
关键混合电路中的保形不变性和量子非本地性
Conformal invariance and quantum non-locality in critical hybrid circuits
论文作者
论文摘要
我们通过揭示在不同电路深度处的各种子区域的纠缠熵和共同信息,在测量驱动的纠缠过渡中建立了(1+1) - 维度杂种量子电路的结合场理论(CFT)的出现。虽然进化是实时进行的,但电路的时空歧管似乎是具有假想时间的欧几里得场理论。在整篇文章中,我们通过在空间和/或时间边界处注入物理Qubt,研究了具有几个不同边界条件的Clifford电路,所有这些都给出了基础“ Clifford CFT”的一致特征。我们强调(超级)普遍的结果,这些结果仅是共形不变性的后果,并且不取决于CFT的确切性质。其中是由于测量引起的量子非局部性和混合初始状态的关键纯化动力学而导致的无限纠缠速度。
We establish the emergence of a conformal field theory (CFT) in a (1+1)-dimensional hybrid quantum circuit right at the measurement-driven entanglement transition by revealing space-time conformal covariance of entanglement entropies and mutual information for various subregions at different circuit depths. While the evolution takes place in real time, the spacetime manifold of the circuit appears to host a Euclidean field theory with imaginary time. Throughout the paper we investigate Clifford circuits with several different boundary conditions by injecting physical qubits at the spatial and/or temporal boundaries, all giving consistent characterizations of the underlying "Clifford CFT." We emphasize (super)universal results that are consequences solely of the conformal invariance and do not depend crucially on the precise nature of the CFT. Among these are the infinite entangling speed as a consequence of measurement-induced quantum nonlocality and the critical purification dynamics of a mixed initial state.