论文标题

一种基于物理的噪声形成模型

A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising

论文作者

Wei, Kaixuan, Fu, Ying, Yang, Jiaolong, Huang, Hua

论文摘要

缺乏丰富和现实的数据,学到的单图像降级算法概括地概括到不类似于训练数据的真实原始图像。尽管该问题可以通过异性噪声综合模型来缓解噪声综合模型,但数码相机电子设备引起的噪声源仍然在很大程度上被忽略,尽管它们对原始测量值有重大影响,尤其是在极低的光线状态下。为了解决此问题,我们根据CMOS光电传感器的特征提出了一个高度准确的噪声形成模型,从而使我们能够合成逼真的样品,以更好地匹配图像形成过程的物理。鉴于提出的噪声模型,我们还提出了一种校准可用现代数字摄像机的噪声参数的方法,对于任何新设备而言,这很简单且可再现。我们通过引入一个新的低光Denoising数据集,系统地研究了接受现有方案训练的神经网络的普遍性,该数据集涵盖了来自不同品牌的许多现代数码相机。广泛的经验结果共同表明,通过利用我们提出的噪声形成模型,网络可以达到能力,就好像已经接受了丰富的真实数据训练,这证明了我们的噪声形成模型的有效性。

Lacking rich and realistic data, learned single image denoising algorithms generalize poorly to real raw images that do not resemble the data used for training. Although the problem can be alleviated by the heteroscedastic Gaussian model for noise synthesis, the noise sources caused by digital camera electronics are still largely overlooked, despite their significant effect on raw measurement, especially under extremely low-light condition. To address this issue, we present a highly accurate noise formation model based on the characteristics of CMOS photosensors, thereby enabling us to synthesize realistic samples that better match the physics of image formation process. Given the proposed noise model, we additionally propose a method to calibrate the noise parameters for available modern digital cameras, which is simple and reproducible for any new device. We systematically study the generalizability of a neural network trained with existing schemes, by introducing a new low-light denoising dataset that covers many modern digital cameras from diverse brands. Extensive empirical results collectively show that by utilizing our proposed noise formation model, a network can reach the capability as if it had been trained with rich real data, which demonstrates the effectiveness of our noise formation model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源