论文标题

基本$ p $ - 组的扩展及其在Prime指数组分类中的应用

Extension of elementary $p$-groups and its application in classification of groups of prime exponent

论文作者

Wan, Zheyan, Ye, Yu, Zhang, Chi

论文摘要

令$ p $为素数,$ \ mathbb {z} _p = \ mathbb {z}/p \ mathbb {z} $。我们在组扩展数据及其矩阵演示的方面研究具有Abelian派生的亚组和指数$ P $的有限组。我们在以下两组之间显示一对一的对应关系:(i)2类指数$ p $和订购$ p^{m+n} $的等级以及带有派生的子组$ \ mathbb {z} _p^n $,和(ii)(ii) $ \ text {gr}(n,\ text {as} _m(\ mathbb {z} _p))/\ text {gl} _m(\ Mathbb {Z} _p) by $\text{GL}_m(\mathbb{Z}_p)$, where $\text{Gr}(n,\text{AS}_m(\mathbb{Z}_p))$ is the set of $n$-dimensional subspaces of anti-symmetric matrices of order $m$ over $\mathbb{Z}_p$.我们给出轨道空间的描述$ \ text {gr}(2,\ text {as} _m(\ mathbb {z} _p)))/\ text {gl} _m(\ mathbb {z} _p {z} _p)$和$ m $和$ p $ p $ a ant ant anti-polent of anti-smmmetrics of poldrics of poldrics。基于此,我们显示了$ \ text {gr}(3,\ text {as} _4(\ Mathbb {z} _3))的完整代表的完整代表。 \ text {as} _4(\ Mathbb {z} _3))/\ text {gl} _4(\ Mathbb {z} _3)$和$ \ text {gr}(3,3, \ text {as} _5(\ Mathbb {z} _3))/\ text {gl} _5(\ Mathbb {z} _3)$。结果,我们获得了相应的2类指数$ p $的分类。特别是,我们恢复具有指数3的组的分类,并订购$ \ le 3^8 $。

Let $p$ be a prime number and $\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}$. We study finite groups with abelian derived subgroup and exponent $p$ in terms of group extension data and their matrix presentations. We show a one-to-one correspondence between the following two sets: (i) the isoclasses of class 2 groups of exponent $p$ and order $p^{m+n}$ and with derived subgroup $\mathbb{Z}_p^n$, and (ii) the set $\text{Gr}(n,\text{AS}_m(\mathbb{Z}_p))/\text{GL}_m(\mathbb{Z}_p)$ of orbits of $\text{Gr}(n,\text{AS}_m(\mathbb{Z}_p))$ under the congruence action by $\text{GL}_m(\mathbb{Z}_p)$, where $\text{Gr}(n,\text{AS}_m(\mathbb{Z}_p))$ is the set of $n$-dimensional subspaces of anti-symmetric matrices of order $m$ over $\mathbb{Z}_p$. We give a description of the orbit spaces $\text{Gr}(2, \text{AS}_m(\mathbb{Z}_p))/\text{GL}_m(\mathbb{Z}_p)$ for all $m$ and $p$ by applying the theory of pencils of anti-symmetric matrices. Based on this, we show complete sets of representatives of orbits of $\text{Gr}(3,\text{AS}_4(\mathbb{Z}_3))/\text{GL}_4(\mathbb{Z}_3)$, $\text{Gr}(4, \text{AS}_4(\mathbb{Z}_3))/\text{GL}_4(\mathbb{Z}_3)$ and $\text{Gr}(3, \text{AS}_5(\mathbb{Z}_3))/\text{GL}_5(\mathbb{Z}_3)$. As a consequence, we obtain a classification of corresponding class 2 groups of exponent $p$. In particular, we recover the classification of groups with exponent 3 and order $\le 3^8$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源