论文标题
使用深度学习对字典DGA网络流量进行实时检测
Real-Time Detection of Dictionary DGA Network Traffic using Deep Learning
论文作者
论文摘要
当使用域名生成算法(DGAS)将标注用于独特的,动态生成的网址时,僵尸网络和恶意软件继续避免通过静态规则引擎检测。常见的DGA检测技术无法可靠地检测到结合随机字典单词的DGA变体,以创建域名,这些域名紧密反映了合法的域。为了解决这个问题,我们创建了一个新型的混合神经网络,Bilbo The Bagging'模型,该模型分析了域并得分它们是由这种算法产生的可能性,因此可能是恶意的。 Bilbo是卷积神经网络(CNN)和用于DGA检测的长短期内存(LSTM)网络的第一个并行用法。与当前最新的深度学习体系结构相比,我们独特的架构在AUC,F1分数和准确性方面的性能最为一致。我们使用反向设计的字典DGA域进行验证,并详细介绍我们在大型财务企业中对现实世界网络日志进行评分的实时实施策略。在四个小时的实际网络流量中,该模型发现了至少五个潜在的命令和控制网络,商业供应商工具没有标记。
Botnets and malware continue to avoid detection by static rules engines when using domain generation algorithms (DGAs) for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To combat this, we created a novel hybrid neural network, Bilbo the `bagging` model, that analyses domains and scores the likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique architecture is found to be the most consistent in performance in terms of AUC, F1 score, and accuracy when generalising across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring real-world network logs within a large financial enterprise. In four hours of actual network traffic, the model discovered at least five potential command-and-control networks that commercial vendor tools did not flag.