论文标题

具有结构的超级分辨率和梯度指导

Structure-Preserving Super Resolution with Gradient Guidance

论文作者

Ma, Cheng, Rao, Yongming, Cheng, Yean, Chen, Ce, Lu, Jiwen, Zhou, Jie

论文摘要

结构在单图像超级分辨率(SISR)中很重要。受益于生成对抗网络(GAN)的最新研究通过恢复照片现实图像来促进SISR的发展。但是,在恢复的图像中总是存在不希望的结构扭曲。在本文中,我们提出了一种具有结构的超级分辨率方法,以减轻上述问题,同时保持基于GAN的方法的优点以生成感知性愉悦的细节。具体而言,我们利用图像的梯度图来指导两个方面的恢复。一方面,我们通过梯度分支恢复高分辨率梯度图,以为SR过程提供其他结构先验。另一方面,我们提出了梯度损失,该梯度损失对超级分辨图像施加了二阶限制。除了先前的图像空间损耗函数外,梯度空间目标有助于生成网络更多地集中于几何结构。此外,我们的方法是模型 - 不合Snostic,它可以用于现成的SR网络。实验结果表明,与最先进的感知驱动的SR方法相比,我们实现了最佳的PI和LPIPS性能,同时可比的PSNR和SSIM可比。视觉结果证明了我们在生成天然SR图像的同时恢复结构方面的优势。

Structures matter in single image super resolution (SISR). Recent studies benefiting from generative adversarial network (GAN) have promoted the development of SISR by recovering photo-realistic images. However, there are always undesired structural distortions in the recovered images. In this paper, we propose a structure-preserving super resolution method to alleviate the above issue while maintaining the merits of GAN-based methods to generate perceptual-pleasant details. Specifically, we exploit gradient maps of images to guide the recovery in two aspects. On the one hand, we restore high-resolution gradient maps by a gradient branch to provide additional structure priors for the SR process. On the other hand, we propose a gradient loss which imposes a second-order restriction on the super-resolved images. Along with the previous image-space loss functions, the gradient-space objectives help generative networks concentrate more on geometric structures. Moreover, our method is model-agnostic, which can be potentially used for off-the-shelf SR networks. Experimental results show that we achieve the best PI and LPIPS performance and meanwhile comparable PSNR and SSIM compared with state-of-the-art perceptual-driven SR methods. Visual results demonstrate our superiority in restoring structures while generating natural SR images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源