论文标题
在有限方向上重新配置机器人群体均匀外部控制的硬度
Hardness of Reconfiguring Robot Swarms with Uniform External Control in Limited Directions
论文作者
论文摘要
出于纳米级的应用和简单的机器人代理的动机,我们会根据使用全局信号来移动所有代理时,当给出有限数量的方向信号和不动产的几何形状时,我们将研究问题。我们研究了一个模型,其中单位正方形颗粒基于均匀的外力在2D网格中移动。运动基于一系列均匀命令,该命令使所有粒子沿特定方向移动1步。 2D网格板还包含“阻止”的空间,可防止粒子进入。在此模型中,我们研究了确定的复杂性1)是否可以(通过任何)粒子(\ emph {占用问题}),2)2)是否可以将特定粒子重新安置到板上的另一个特定位置(\ emph {reliocation问题})和3)是否可以将板配置转换为另一种配置(prongig emphig)。我们证明,尽管在多项式时间内可以解决占用率,但即使仅限于2或3个运动方向,搬迁和重新配置问题也是NP完整的。我们进一步定义了董事会几何形状的层次结构,并表明这种硬度甚至适合非常受限制的板几何形状。
Motivated by advances is nanoscale applications and simplistic robot agents, we look at problems based on using a global signal to move all agents when given a limited number of directional signals and immovable geometry. We study a model where unit square particles move within a 2D grid based on uniform external forces. Movement is based on a sequence of uniform commands which cause all particles to move 1 step in a specific direction. The 2D grid board additionally contains "blocked" spaces which prevent particles from entry. Within this model, we investigate the complexity of deciding 1) whether a target location on the board can be occupied (by any) particle (\emph{occupancy problem}), 2) whether a specific particle can be relocated to another specific position in the board (\emph{relocation problem}), and 3) whether a board configuration can be transformed into another configuration (\emph{reconfiguration problem}). We prove that while occupancy is solvable in polynomial time, the relocation and reconfiguration problems are both NP-Complete even when restricted to only 2 or 3 movement directions. We further define a hierarchy of board geometries and show that this hardness holds for even very restricted classes of board geometry.