论文标题
最常见的可居住行星II-低质量可居住行星和全球气候进化中的咸海洋
The Most Common Habitable Planets II -- Salty Oceans in Low Mass Habitable Planets and Global Climate Evolution
论文作者
论文摘要
可居住地的地球行星的全球气候演化模型不考虑海洋盐度对整个水文周期形成冰冰的影响。我们考虑了这两类此类行星:具有深海的行星,但由于水热通风孔去除盐的过程较弱,盐分本质上的盐度较高;和具有浅海的行星,冰川发作期间盐分含量的增加和海洋地区的减少会导致负反馈,有助于延迟地面冰的蔓延。我们使用一系列初始盐浓度开发了在冰河时代的边缘的宜居行星的玩具气候模型。考虑到最大盐度范围,深海和高盐度的行星在用冰盖填充北极土地所需的时间大幅度增加了。对于具有浅海的行星,固有的高盐度的影响通过负反馈加强,抵消了诸如冰山和Croll-Milankovitch扰动之类的积极反馈,并在模拟时间表上有效终止地面冰板生长速度。我们还将这种模型应用于火星早期的推定海洋,发现中间结果:考虑到其冰河时代的时间表,盐度可能在火星气候的演变中没有作用。我们得出的结论是,这种现象本质上是一种针对冰年龄的非生物自我调节机制,在比地球更小,更干燥的背景下应考虑到,这很可能代表了大部分可居住的行星。
Global climate evolution models for habitable earthlike planets do not consider the effect of ocean salinity on land ice formation through the hydrological cycle. We consider two categories of such planets: planets with deep oceans, but intrinsically high salinities due to the weaker salt removal process by hydrothermal vents; and planets with shallow oceans, where the increase in salt content and decrease in ocean area during the onset of glaciation cause a negative feedback, helping delay the spread of land ice. We developed a toy climate model of a habitable planet on the verge of an ice age, using a range of initial salt concentrations. Planets with deep oceans and high salinity show considerable increase in the time necessary to fill arctic land with ice sheets, up to 23% considering the maximum salinity range. For planets with shallow oceans, the effect of intrinsic high salinity is reinforced by the negative feedback, counteracting positive feedbacks like the ice-albedo and Croll-Milankovitch perturbations, to the point of effectively terminating land ice sheet growth rate during the simulated timescale. We also apply this model to the putative ocean of early Mars, finding intermediate results: salinity probably did not play a role in the evolution of Mars' climate, considering the timescale of its ice ages. We conclude that this phenomenon is essentially an abiotic self-regulation mechanism against ice ages and should be regarded in the context of habitable planets smaller and drier than the Earth, which may well represent the bulk of habitable planets.