论文标题

Leibniz代数及其内部自动形态的对称多项式

Symmetric polynomials in Leibniz algebras and their inner automorphisms

论文作者

Findik, Sehmus, Ozkurt, Zeynep

论文摘要

令$ l_n $为$ x_n = \ {x_1,\ ldots,x_n \} $在特征零的字段$ k $上生成的免费metabelian leibniz代数。这是$ 2 $ 2 $ leibniz代数的各种可解决方案中的排名$ n $的免费代数。如果$ s(x_ {σ(1)},\ ldots,x_ {σ(n)})= s(x_1,\ ldots,x_n)$ in l_n $ symmetric中的元素$ s(x_n)\ in l_n $对称。 $ l_n $的对称多项式的$ l_n^{s_n} $是对称组的代数$ s_n $。令$ k [x_n] $为通常的多项式代数,而$ x_n $不确定。代数$ k [x_n]^{s_n} $的描述是众所周知的,而换向器中的代数$(l_n')^{s_n} $在commutator poldumutator bexple $ l_n'$中是一个正确的$ k [x_n]^{x_n]^{s_n} $ - module。我们给出$ k [x_n]^{s_n} $ - 模块$(l_n')^{s_n} $的明确形式的元素。此外,我们确定组的$ {\ rm inn}的描述(l_ {n}^{s_n})$的内部自动形态$ l_n^{s_n} $。这些发现可以被视为对自由Metabelian Lie代数获得的最新结果的概括。

Let $L_n$ be the free metabelian Leibniz algebra generated by the set $X_n=\{x_1,\ldots,x_n\}$ over a field $K$ of characteristic zero. This is the free algebra of rank $n$ in the variety of solvable of class $2$ Leibniz algebras. We call an element $s(X_n)\in L_n$ symmetric if $s(x_{σ(1)},\ldots,x_{σ(n)})=s(x_1,\ldots,x_n)$ for each permutation $σ$ of $\{1,\ldots,n\}$. The set $L_n^{S_n}$ of symmetric polynomials of $L_n$ is the algebra of invariants of the symmetric group $S_n$. Let $K[X_n]$ be the usual polynomial algebra with indeterminates from $X_n$. The description of the algebra $K[X_n]^{S_n}$ is well known, and the algebra $(L_n')^{S_n}$ in the commutator ideal $L_n'$ is a right $K[X_n]^{S_n}$-module. We give explicit forms of elements of the $K[X_n]^{S_n}$-module $(L_n')^{S_n}$. Additionally, we determine the description of the group ${\rm Inn}(L_{n}^{S_n})$ of inner automorphisms of the algebra $L_n^{S_n}$. The findings can be considered as a generalization of the recent results obtained for the free metabelian Lie algebra of rank $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源