论文标题

用于高光谱图像增强的开源工具

An Open-source Tool for Hyperspectral Image Augmentation in Tensorflow

论文作者

Abdelhack, Mohamed

论文摘要

卫星图像允许大量的应用,从天气预报到土地测量。由于大量数据,计算机视觉系统的快速开发可以为卫星数据的利用开辟新的视野。但是,当前的最新计算机视觉系统主要迎合主要涉及自然图像的应用。尽管有用,但除了拥有更多的光谱通道外,这些图像与卫星图像具有不同的分布。这仅在光谱通道的一个子集中使用验证的深度学习模型,这些模型等同于自然图像,从而从其他光谱通道中丢弃了有价值的信息。这呼吁进行研究工作,以优化卫星图像的深度学习模型,以便评估其在遥感领域的效用。 Tensorflow工具允许对深度学习模型进行快速原型制作和测试,但是,其内置图像发生器旨在处理最多四个光谱通道。该手稿引入了一个开源工具,该工具允许在TensorFlow中实现高光谱图像的图像增强。鉴于该工具的可访问和易于使用的张力量是如何可访问的,因此该工具将为许多研究人员提供实施,测试和部署深度学习模型的方法。

Satellite imagery allows a plethora of applications ranging from weather forecasting to land surveying. The rapid development of computer vision systems could open new horizons to the utilization of satellite data due to the abundance of large volumes of data. However, current state-of-the-art computer vision systems mainly cater to applications that mainly involve natural images. While useful, those images exhibit a different distribution from satellite images in addition to having more spectral channels. This allows the use of pretrained deep learning models only in a subset of spectral channels that are equivalent to natural images thus discarding valuable information from other spectral channels. This calls for research effort to optimize deep learning models for satellite imagery to enable the assessment of their utility in the domain of remote sensing. Tensorflow tool allows for rapid prototyping and testing of deep learning models, however, its built-in image generator is designed to handle a maximum of four spectral channels. This manuscript introduces an open-source tool that allows the implementation of image augmentation for hyperspectral images in Tensorflow. Given how accessible and easy-to-use Tensorflow is, this tool would provide many researchers with the means to implement, test, and deploy deep learning models for remote sensing applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源