论文标题
基于约旦代数的宇宙模型
Models of the Universe based on Jordan algebras
论文作者
论文摘要
我们根据约旦代数为宇宙提出了一个模型。该动作由立方术语组成,系数是约旦代数的结构常数。耦合常数仅通过对称性破裂输入该理论,该理论也选择了物理真空。 “之前”对称打破宇宙的对称性处于一个几何状态,在该状态下,谈论空间或时间毫无意义,但是随着对称性的破坏与哈密顿量的破裂结合在一起,可以从“ Nothing”中创造空间,在某些情况下可以在有限的时间内传播到巨大尺寸的空间。存在对称性的破坏,这会导致宏观的时空维度3、4、6和10,基于赫米尔式3x3矩阵的约旦代数,分别具有真实,复杂,季节和八度条目。
We propose a model for the universe based on Jordan algebras. The action consists of cubic terms with coefficients being the structure constants of a Jordan algebra. Coupling constants only enter the theory via symmetry breaking which also selects a physical vacuum. "Before" the symmetry breaking the universe is in a pre-geometric state where it makes no sense to talk about space or time, but time comes into existence with the symmetry breaking together with a Hamiltonian which can create space from "nothing" and in some cases can propagate the space to macroscopic size in a finite time. There exists symmetry breaking which results in macroscopic spacetime dimensions 3, 4, 6 and 10, based on the Jordan algebras of Hermitian 3x3 matrices with real, complex, quarternion and octonion entries,respectively.