论文标题

翻译不变的通用量子汉密尔顿人在1d

Translationally-Invariant Universal Quantum Hamiltonians in 1D

论文作者

Kohler, Tamara, Piddock, Stephen, Bausch, Johannes, Cubitt, Toby

论文摘要

最近的工作对一个量子系统模拟另一个量子系统的意义进行了严格的特征,并证明了普遍的汉密尔顿人的存在 - 简单的旋转晶格汉密尔顿人可以复制任何其他量子的许多人体系统的整个物理学。以前的普遍性结果需要证明涉及扰动的“小工具”的复杂“链”。在本文中,我们得出了一种证明哈密顿人普遍性的更简单,更强大的方法,直接利用将量子计算编码为基础状态的能力。这为通用模型的起源提供了新的见解,并提出了普遍性与复杂性之间的密切联系。我们采用这种新方法来表明即使在1D中翻译不变的旋转链中也存在通用模型。这给出了一种推论,这是一个新的哈密顿复杂性结果,即在一个维度上,在一个维度上进行翻译不变的旋转链的局部问题,并且呈指数级别的承诺差距是Pspace complete。最后,我们使用这些新的通用模型来构建本地汉密尔顿人之间的2D--1D全息二元性的首个已知的玩具模型。

Recent work has characterised rigorously what it means for one quantum system to simulate another, and demonstrated the existence of universal Hamiltonians -- simple spin lattice Hamiltonians that can replicate the entire physics of any other quantum many body system. Previous universality results have required proofs involving complicated `chains' of perturbative `gadgets'. In this paper, we derive a significantly simpler and more powerful method of proving universality of Hamiltonians, directly leveraging the ability to encode quantum computation into ground states. This provides new insight into the origins of universal models, and suggests a deep connection between universality and complexity. We apply this new approach to show that there are universal models even in translationally invariant spin chains in 1D. This gives as a corollary a new Hamiltonian complexity result, that the local Hamiltonian problem for translationally-invariant spin chains in one dimension with an exponentially-small promise gap is PSPACE-complete. Finally, we use these new universal models to construct the first known toy model of 2D--1D holographic duality between local Hamiltonians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源