论文标题

在野外细分透明物体

Segmenting Transparent Objects in the Wild

论文作者

Xie, Enze, Wang, Wenjia, Wang, Wenhai, Ding, Mingyu, Shen, Chunhua, Luo, Ping

论文摘要

透明的物体(例如玻璃制造的窗户和瓶子)在现实世界中广泛存在。分割透明的物体是具有挑战性的,因为这些物体具有从图像背景继承的各种外观,使它们的外观与周围环境相似。除了此任务的技术难度外,只有一些以前的数据集经过专门设计和收集以探索此任务,并且大多数现有数据集都有主要缺点。他们要么具有有限的样本量,例如仅一千个没有手动注释的图像,要么使用计算机图形方法(即不是真实图像)生成所有图像。为了解决这一重要问题,这项工作提出了一个用于透明对象分割的大规模数据集,该数据集名为Trans10k,由10,428张带有仔细手动注释的真实场景的图像组成,比现有数据集大10倍。 Trans10K中的透明对象由于规模,观点和遮挡的高度多样性,如图1所示。为了评估Trans10K的有效性,我们提出了一种新型的边界吸引分段方法,称为Translab,该方法利用边界作为线索作为线索来改善透明对象的分割。广泛的实验和消融研究证明了Trans10K的有效性,并验证了Translab中学习对象边界的实用性。例如,Translab明显胜过20种基于深度学习的对象分割方法,这表明该任务在很大程度上尚未解决。我们认为,Trans10k和Translab都对学术界和行业都有重要贡献,从而促进了未来的研究和应用。

Transparent objects such as windows and bottles made by glass widely exist in the real world. Segmenting transparent objects is challenging because these objects have diverse appearance inherited from the image background, making them had similar appearance with their surroundings. Besides the technical difficulty of this task, only a few previous datasets were specially designed and collected to explore this task and most of the existing datasets have major drawbacks. They either possess limited sample size such as merely a thousand of images without manual annotations, or they generate all images by using computer graphics method (i.e. not real image). To address this important problem, this work proposes a large-scale dataset for transparent object segmentation, named Trans10K, consisting of 10,428 images of real scenarios with carefully manual annotations, which are 10 times larger than the existing datasets. The transparent objects in Trans10K are extremely challenging due to high diversity in scale, viewpoint and occlusion as shown in Fig. 1. To evaluate the effectiveness of Trans10K, we propose a novel boundary-aware segmentation method, termed TransLab, which exploits boundary as the clue to improve segmentation of transparent objects. Extensive experiments and ablation studies demonstrate the effectiveness of Trans10K and validate the practicality of learning object boundary in TransLab. For example, TransLab significantly outperforms 20 recent object segmentation methods based on deep learning, showing that this task is largely unsolved. We believe that both Trans10K and TransLab have important contributions to both the academia and industry, facilitating future researches and applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源