论文标题
一维耗散哈伯德模型的精确liouvillian频谱
Exact Liouvillian Spectrum of a One-Dimensional Dissipative Hubbard Model
论文作者
论文摘要
证明具有两体损失的一维耗散哈伯德模型是可以解决的。我们通过采用贝塞 - 萨茨法的非弱点扩展来获得Liouvillian超级操作员的精确特征。我们发现稳态状态,liouvillian间隙以及一个伴随着相关长度分歧的特殊点。还展示了由量子zeno效应诱导的自旋荷兰分离的耗散版本。我们的结果提出了一类新的开放量子多体系统的可解决的液化器,可以用弹性碰撞的超低原子进行测试。
A one-dimensional dissipative Hubbard model with two-body loss is shown to be exactly solvable. We obtain an exact eigenspectrum of a Liouvillian superoperator by employing a non-Hermitian extension of the Bethe-ansatz method. We find steady states, the Liouvillian gap, and an exceptional point that is accompanied by the divergence of the correlation length. A dissipative version of spin-charge separation induced by the quantum Zeno effect is also demonstrated. Our result presents a new class of exactly solvable Liouvillians of open quantum many-body systems, which can be tested with ultracold atoms subject to inelastic collisions.