论文标题

动力学交通网络模型及其宏观限制:分化车道

A kinetic traffic network model and its macroscopic limit: diverging lanes

论文作者

Borsche, Raul, Klar, Axel

论文摘要

在本文中,我们提出了针对不同车道交界处的动力通信模型的动力学两个速度模型的耦合条件。我们考虑具有或没有方向偏好的病例,并呈现相应的动力学耦合条件。从这个动力学网络模型耦合条件中,得出了宏观交通模型的耦合条件。我们将连接处的层方程分析与适当的匹配程序结合使用,其中宏观模型有半右手问题。这样,网络上流量流的标量保护定律的经典耦合条件就源自基本网络问题。

In this paper we propose coupling conditions for a kinetic two velocity model for vehicular traffic for junctions with diverging lanes. We consider cases with and without directional preferences and present corresponding kinetic coupling conditions. From this kinetic network model coupling conditions for a macroscopic traffic model are derived. We use an analysis of the layer equations at the junction in combination with a suitable matching procedure with half-Riemann problems for the macroscopic model. In this way classical coupling conditions for scalar conservation laws for traffic flow on networks are derived from an underlying network problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源