论文标题

样品路径大偏差,用于反射的随机步行的无限添加功能

Sample-path large deviations for unbounded additive functionals of the reflected random walk

论文作者

Bazhba, Mihail, Blanchet, Jose, Rhee, Chang-Han, Zwart, Bert

论文摘要

我们证明了一个样品路径大偏差原理(LDP),具有子线性速度,用于林德利递归引起的某些马尔可夫链的无界功能。 LDP保留在Skorokhod空间$ \ mathbb {d} [0,t] $配备了$ M_1' $拓扑。我们的技术取决于马尔可夫链的合适分解,以再生周期为单位。每个再生周期表示在反射随机行走的繁忙时期内积累的面积。在MRW的繁忙时期,我们证明了该地区的一个巨大偏差原则,我们表明它表现出了重型的行为。

We prove a sample path large deviation principle (LDP) with sub-linear speed for unbounded functionals of certain Markov chains induced by the Lindley recursion. The LDP holds in the Skorokhod space $\mathbb{D}[0,T]$ equipped with the $M_1'$ topology. Our technique hinges on a suitable decomposition of the Markov chain in terms of regeneration cycles. Each regeneration cycle denotes the area accumulated during the busy period of the reflected random walk. We prove a large deviation principle for the area under the busy period of the MRW, and we show that it exhibits a heavy-tailed behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源