论文标题

$ \ mathbb {z}^2 $的适当的3色为bernoulli

Proper 3-colorings of $\mathbb{Z}^2$ are Bernoulli

论文作者

Ray, Gourab, Spinka, Yinon

论文摘要

我们考虑了$ \ mathbb {z}^2 $的适当3色的最大熵的独特度量,或者等效地,所谓的零斜率吉布斯度量。我们的主要结果是,该度量是Bernoulli或等效的,它可以表示为放置在$ \ Mathbb {Z}^2 $上的独立且相同分布的随机变量的翻译等值函数的图像。一路上,我们获得了有关此度量的混合特性的各种估计。

We consider the unique measure of maximal entropy for proper 3-colorings of $\mathbb{Z}^2$, or equivalently, the so-called zero-slope Gibbs measure. Our main result is that this measure is Bernoulli, or equivalently, that it can be expressed as the image of a translation-equivariant function of independent and identically distributed random variables placed on $\mathbb{Z}^2$. Along the way, we obtain various estimates on the mixing properties of this measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源