论文标题
Swampland猜想和TCC绑定的网络
The web of swampland conjectures and the TCC bound
论文作者
论文摘要
我们考虑了Swampland距离和De Sitter的猜想,各自的订单一个参数$λ$和$ c $。受到最近的Trans-Planckian审查制度猜想(TCC)的启发,我们提出了距离猜想的概括,该距离的概括为$λ$,是TCC的一半,以$ c $绑定为$ c $,即$ c \ geq \ geq \ geq \ frac {1} {2} {2} {2} {2} {2} \ sqrt {\ sqrt {\ freac {\ frac {2} $ {2} $ {2}}}}此外,我们提出了两个猜想之间的对应关系,一侧将塔的质量$ m $与标量$ v $在另一侧的标量$ v $相关联,为$ m \ sim | v |^{\ frac {\ frac {1} {2} {2}}} $,以较大的距离限制。这些建议表明标量弱重力猜想的概括,并由各种例子支持。在文献中,在许多情况下,在$λ$上的下限被明确验证。在$ C $上的TCC绑定也将在十个不同的无关定理上进行详细研究,并在渐近限制中分析了$ V $。特别是,获得了II型压缩的4D标量电势的新结果。
We consider the swampland distance and de Sitter conjectures, of respective order one parameters $λ$ and $c$. Inspired by the recent Trans-Planckian Censorship conjecture (TCC), we propose a generalization of the distance conjecture, which bounds $λ$ to be a half of the TCC bound for $c$, i.e. $λ\geq \frac{1}{2}\sqrt{\frac{2}{3}}$ in 4d. In addition, we propose a correspondence between the two conjectures, relating the tower mass $m$ on the one side to the scalar potential $V$ on the other side schematically as $m\sim |V|^{\frac{1}{2}}$, in the large distance limit. These proposals suggest a generalization of the scalar weak gravity conjecture, and are supported by a variety of examples. The lower bound on $λ$ is verified explicitly in many cases in the literature. The TCC bound on $c$ is checked as well on ten different no-go theorems, which are worked-out in detail, and $V$ is analysed in the asymptotic limit. In particular, new results on 4d scalar potentials from type II compactifications are obtained.