论文标题

离散轨道恢复模型的可能性景观和最大似然估计

Likelihood landscape and maximum likelihood estimation for the discrete orbit recovery model

论文作者

Fan, Zhou, Sun, Yi, Wang, Tianhao, Wu, Yihong

论文摘要

我们研究了具有高斯噪声的离散轨道恢复模型中的最大似然估计,以进行非凸优化景观。该模型是由分子显微镜和图像处理中应用的,其中未知对象的每个测量都会受到旋转组的独立随机旋转。同等地,这是一个高斯混合模型,其中混合物中心属于轨道。 我们表明,可能性景观的基本特性取决于信噪比和组结构。在低噪声下,对于任何离散群体来说,这种景观都是“良性”的,没有任何虚假的当地优点,只有严格的鞍点。在高噪声下,这种景观可能会根据特定组发展而产生杂散的本地最佳Opta。我们讨论了几个积极和负面的例子,并提供了确保全球良性景观的一般条件。对于在$ \ mathbb {r}^d $(多引用对齐)上的坐标循环排列时,当$ d \ geq 6 $时,可能会有杂乱无章的本地Optima,我们在这些本地Optima与傅立叶域中相位变量的替代功能之间建立了对应关系。 我们表明,Fisher信息矩阵矩阵从相似的低噪声中的单个高斯的转变到具有高噪声中的分级特征值结构,该结构由小组作用下不变多项式的分级代数确定。在真实物体的当地邻域中,在通过此多项式代数的超越基础给出的变量系统中,可能性景观强烈凸出。我们讨论了对优化算法的影响,包括期望最大化的缓慢收敛,以及基于动量的加速度和一阶下降方法的可变恢复的可能优势。

We study the non-convex optimization landscape for maximum likelihood estimation in the discrete orbit recovery model with Gaussian noise. This model is motivated by applications in molecular microscopy and image processing, where each measurement of an unknown object is subject to an independent random rotation from a rotational group. Equivalently, it is a Gaussian mixture model where the mixture centers belong to a group orbit. We show that fundamental properties of the likelihood landscape depend on the signal-to-noise ratio and the group structure. At low noise, this landscape is "benign" for any discrete group, possessing no spurious local optima and only strict saddle points. At high noise, this landscape may develop spurious local optima, depending on the specific group. We discuss several positive and negative examples, and provide a general condition that ensures a globally benign landscape. For cyclic permutations of coordinates on $\mathbb{R}^d$ (multi-reference alignment), there may be spurious local optima when $d \geq 6$, and we establish a correspondence between these local optima and those of a surrogate function of the phase variables in the Fourier domain. We show that the Fisher information matrix transitions from resembling that of a single Gaussian in low noise to having a graded eigenvalue structure in high noise, which is determined by the graded algebra of invariant polynomials under the group action. In a local neighborhood of the true object, the likelihood landscape is strongly convex in a reparametrized system of variables given by a transcendence basis of this polynomial algebra. We discuss implications for optimization algorithms, including slow convergence of expectation-maximization, and possible advantages of momentum-based acceleration and variable reparametrization for first- and second-order descent methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源