论文标题
某些定向最大函数的几乎正交性原则
Almost-orthogonality principles for certain directional maximal functions
论文作者
论文摘要
我们为与线段和方向奇异积分相关的最大函数开发了几乎正交性原理。使用它们,当在$ \ mathbb {s}^{n-1} $中均衡时,我们将获得这些最大功能的尖锐$ l^2 $ bounds。
We develop almost-orthogonality principles for maximal functions associated with averages over line segments and directional singular integrals. Using them, we obtain sharp $L^2$-bounds for these maximal functions when the underlying direction set is equidistributed in $\mathbb{S}^{n-1}$.