论文标题
幻影地图和纤维
Phantom maps and fibrations
论文作者
论文摘要
给定的指向$ cw $ - complexes $ x $和$ y $,$ \ rmph(x,y)$表示幻影映射的一组同型Phantom Maps类,从$ x $到$ y $和$ y $和$ \ rmsph(x,y)$表示$ \ \ rmph(x,y)$的子集(x,y)$由特殊phantom class of Phantom MAPS MAPS MAPS MAPS组成。在上一篇论文中,我们提供了足够的条件,以至于$ \ rmph(x,y)$和$ \ rmsph(x,y)$具有天然组结构,并建立了一个用于计算$ \ rmph(x,y)$和$ \ rmsph(x,x,y)$的公式,在许多情况下,在$中,$ [x,x,x,y. x,y.在本文中,我们建立了公式的双重版本,其中目标是振动的总空间,以计算对$ \ rmph(x,y)$和$ \ rmsph(x,y)的$(x,y)$(x,y)$(x,y)$的$(x,y)$,该公式或现有方法不适用。特别是,我们计算这些$ \ rmph(x,y)$和$ \ rmsph(x,y)$ $(x,y)$(x,y)$,使得$ x $是紧凑型lie $ g $的分类$ bg $ bg $ g $,$ y $ y $ y $ y是高度连接的cove $ y'\ langle n \ rangle n \ range $ y $ y n gbb y y gbb y' $ \ gbb = u,o $的h $由紧凑的谎言组$ h $。
Given pointed $CW$-complexes $X$ and $Y$, $\rmph(X, Y)$ denotes the set of homotopy classes of phantom maps from $X$ to $Y$ and $\rmsph(X, Y)$ denotes the subset of $\rmph(X, Y)$ consisting of homotopy classes of special phantom maps. In a preceding paper, we gave a sufficient condition such that $\rmph(X, Y)$ and $\rmsph(X, Y)$ have natural group structures and established a formula for calculating the groups $\rmph(X, Y)$ and $\rmsph(X, Y)$ in many cases where the groups $[X,Ω\widehat{Y}]$ are nontrivial. In this paper, we establish a dual version of the formula, in which the target is the total space of a fibration, to calculate the groups $\rmph(X, Y)$ and $\rmsph(X, Y)$ for pairs $(X,Y)$ to which the formula or existing methods do not apply. In particular, we calculate the groups $\rmph(X,Y)$ and $\rmsph(X,Y)$ for pairs $(X,Y)$ such that $X$ is the classifying space $BG$ of a compact Lie group $G$ and $Y$ is a highly connected cover $Y' \langle n \rangle$ of a nilpotent finite complex $Y'$ or the quotient $\gbb / H$ of $\gbb = U, O$ by a compact Lie group $H$.