论文标题

基于时频分析的多个Antenna系统的盲型调制分类

Time-Frequency Analysis based Blind Modulation Classification for Multiple-Antenna Systems

论文作者

Jiang, Weiheng, Wu, Xiaogang, Chen, Bolin, Feng, Wenjiang, Jin, Yi

论文摘要

盲调制分类是实施认知无线网络的重要步骤。多输入多输出(MIMO)技术被广泛用于军事和民用通讯系统。由于缺乏有关频道参数的先前信息以及MIMO系统中信号的重叠,因此无法直接在这些情况下使用传统的基于可能性的基于特征和基于功能的方法。因此,在本文中,为了解决MIMO系统中盲调的分类问题,基于窗户短时傅立叶变换的时频分析方法用于分析时间域调制信号的时频特性。然后将提取的时频特性转换为RGB频谱图像,并将基于转移学习的卷积神经网络应用于根据RGB光谱图图像对调制类型进行分类。最后,使用决策融合模块融合所有接收天线的分类结果。通过模拟,我们分析了不同信噪比(SNRS)的分类性能,结果表明,对于单输入单输出(SISO)网络,我们提出的方案分别可以达到92.37%和99.12%的平均分类精度-4 db和10 dB。对于MIMO网络,我们的方案分别达到87.42%和87.92%的平均分类精度分别为-4 dB和10 dB。这表现优于基于基带信号的现有分类方法。

Blind modulation classification is an important step to implement cognitive radio networks. The multiple-input multiple-output (MIMO) technique is widely used in military and civil communication systems. Due to the lack of prior information about channel parameters and the overlapping of signals in the MIMO systems, the traditional likelihood-based and feature-based approaches cannot be applied in these scenarios directly. Hence, in this paper, to resolve the problem of blind modulation classification in MIMO systems, the time-frequency analysis method based on the windowed short-time Fourier transform is used to analyse the time-frequency characteristics of time-domain modulated signals. Then the extracted time-frequency characteristics are converted into RGB spectrogram images, and the convolutional neural network based on transfer learning is applied to classify the modulation types according to the RGB spectrogram images. Finally, a decision fusion module is used to fuse the classification results of all the receive antennas. Through simulations, we analyse the classification performance at different signal-to-noise ratios (SNRs), the results indicate that, for the single-input single-output (SISO) network, our proposed scheme can achieve 92.37% and 99.12% average classification accuracy at SNRs of -4 dB and 10 dB, respectively. For the MIMO network, our scheme achieves 80.42% and 87.92% average classification accuracy at -4 dB and 10 dB, respectively. This outperforms the existing classification methods based on baseband signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源