论文标题

处理回归问题中的概念漂移 - 错误交点方法

Handling Concept Drifts in Regression Problems -- the Error Intersection Approach

论文作者

Baier, Lucas, Hofmann, Marcel, Kühl, Niklas, Mohr, Marisa, Satzger, Gerhard

论文摘要

机器学习模型是对大数据预测的无所不在的。部署模型的一个挑战是随着时间的推移,数据的变化,这是一种称为概念漂移的现象。如果无法正确处理,概念漂移可能会导致重大的错误预测。我们探索了一种新颖的概念漂移处理方法,该方法描述了一种在简单且复杂的机器学习模型在回归任务中的应用之间切换的策略。我们假设该方法会扮演每个模型的各个强度,如果发生漂移并切换回复杂模型,则切换到更简单的模型。我们对纽约市的出租车需求的现实数据集实例化,该方法容易发生多个漂移,例如暴风雪的天气现象导致出租车需求突然减少。我们能够证明,我们建议的方法的表现都大大优于所有对基线。

Machine learning models are omnipresent for predictions on big data. One challenge of deployed models is the change of the data over time, a phenomenon called concept drift. If not handled correctly, a concept drift can lead to significant mispredictions. We explore a novel approach for concept drift handling, which depicts a strategy to switch between the application of simple and complex machine learning models for regression tasks. We assume that the approach plays out the individual strengths of each model, switching to the simpler model if a drift occurs and switching back to the complex model for typical situations. We instantiate the approach on a real-world data set of taxi demand in New York City, which is prone to multiple drifts, e.g. the weather phenomena of blizzards, resulting in a sudden decrease of taxi demand. We are able to show that our suggested approach outperforms all regarded baselines significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源