论文标题
准直接驱动驱动致动,用于具有高背景性和高带宽的轻质臀部外骨骼
Quasi-Direct Drive Actuation for a Lightweight Hip Exoskeleton with High Backdrivability and High Bandwidth
论文作者
论文摘要
高性能的执行器对于使下limb可穿戴机器人的机械多功能性至关重要,该机器人需要轻巧,高度可观且具有高带宽。最先进的执行器,例如串联弹性执行器(海洋),必须妥协带宽以提高依从性(即背景性)。在本文中,我们根据我们的自定义准准直接驱动器(QDD)致动(即具有低比率齿轮的高扭矩密度电动机)来描述便携式外骨骼的设计和人机交互建模。我们还提供了代表性执行器的基于模型的性能基准比较,以扭矩能力,控制带宽,背景性和力跟踪精度。本文旨在证实“控制设计”的基本理念,即精致的机器人设计可以简化控制算法,同时确保高性能。遵循这个想法,我们创建了轻巧的双侧髋部外骨骼(总质量为3.4千克),以减少正常活动期间的关节载荷,包括步行和蹲。实验结果表明,外骨骼能够产生较高的标称扭矩(17.5 nm),高背景性(0.4 nm背景扭矩),高带宽(62.4 Hz)和高控制精度(1.09 nm均匀的平方均方根跟踪误差,即,均值峰值扭矩为5.4%)。它的控制器用途广泛,可以帮助以不同的速度(0.8-1.4 m/s)行走,并以2 s的速度蹲下。这项工作表明,与传统驱动或海洋驱动的最先进的外骨骼相比,背景性和控制带宽的显着改善。
High-performance actuators are crucial to enable mechanical versatility of lower-limb wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to compromise bandwidth to improve compliance (i.e., backdrivability). In this paper, we describe the design and human-robot interaction modeling of a portable hip exoskeleton based on our custom quasi-direct drive (QDD) actuation (i.e., a high torque density motor with low ratio gear). We also present a model-based performance benchmark comparison of representative actuators in terms of torque capability, control bandwidth, backdrivability, and force tracking accuracy. This paper aims to corroborate the underlying philosophy of "design for control", namely meticulous robot design can simplify control algorithms while ensuring high performance. Following this idea, we create a lightweight bilateral hip exoskeleton (overall mass is 3.4 kg) to reduce joint loadings during normal activities, including walking and squatting. Experimental results indicate that the exoskeleton is able to produce high nominal torque (17.5 Nm), high backdrivability (0.4 Nm backdrive torque), high bandwidth (62.4 Hz), and high control accuracy (1.09 Nm root mean square tracking error, i.e., 5.4% of the desired peak torque). Its controller is versatile to assist walking at different speeds (0.8-1.4 m/s) and squatting at 2 s cadence. This work demonstrates significant improvement in backdrivability and control bandwidth compared with state-of-the-art exoskeletons powered by the conventional actuation or SEA.