论文标题
学习缓存和缓存学习:遗憾的缓存算法分析
Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms
论文作者
论文摘要
缓存算法的关键性能指标包括其快速准确地学习请求的普及分布的能力。但是,大多数在分析性能分析上的工作都集中在渐近的大期之后的命中率上。我们考虑在线学习的观点,并根据候选人缓存算法获得的命中率有限的时差来表征“遗憾”,该算法在纳入缓存中最受欢迎的项目的精神辅助方案。我们首先考虑完整的观察方案,其中所有请求均被缓存看到。我们表明,最不常用的(LFU)算法能够实现订单最佳遗憾,这与我们称为LFU-Lite的有效计数算法设计相匹配。然后,我们考虑了部分观察方案,即缓存只能看到当前缓存的项目的请求,从而与与多武器匪徒问题有关的在线学习问题类似。我们展示了如何使用传统方法接近这种“缓存匪徒”会产生高复杂性或遗憾,但是一种简单的算法设计可以利用分布的结构来确保订单最佳的遗憾。我们通过使用数值模拟说明我们的见解来结束。
Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations.