论文标题

关于泰勒扩展实际功能的注释

A note on Taylor expansion of real function

论文作者

Tang, Shun

论文摘要

令$ f(x)$为一个真实函数,在间隔$ [a,b] $上具有$(n+1)$ - th衍生物。对于任何点$ x_0 \ in(a,b)$和任何整数$ 0 \ leq k \ leq n $,用$ s_ {k,x_0}(x)$ k $ the $ k $ - taylor扩展的$ f(x)$ at $ x_0 $的$ f(x)$。 $ s_ {k,x_0}(x)= \ sum_ {i = 0}^k \ frac {f^{(i)}(i)}(x_0)} {i!}(x-x_0)^i。$ $ $ $ $在本注中,我们考虑$ l_2 $ approximation of $ l_2 $ f(x) $ s_ {k,x_0}(x)$是$ [x_0- \ varepsilon,x_0+\ varepsilon] $ as $ \ varepsilon \ to $ \ varepsilon \至0 $的最佳近似值的极限。

Let $f(x)$ be a real function which has $(n+1)$-th derivative on an interval $[a, b]$. For any point $x_0\in (a, b)$ and any integer $0\leq k\leq n$, denote by $S_{k,x_0}(x)$ the $k$-th truncation of the Taylor expansion of $f(x)$ at $x_0$, i.e. $$S_{k,x_0}(x)=\sum_{i=0}^k\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i.$$ In this note, we consider the $L_2$-approximation of $f(x)$ by polynomials of degree $\leq k$, we show that $S_{k,x_0}(x)$ is the limit of the best approximations of $f(x)$ on $[x_0-\varepsilon, x_0+\varepsilon]$ as $\varepsilon\to 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源