论文标题

5G和超越网络切片的动态虚拟资源分配

Dynamic Virtual Resource Allocation for 5G and Beyond Network Slicing

论文作者

Song, Fei, Li, Jun, Ma, Chuan, Zhang, Yijin, Shi, Long, Li, Dushantha Nalin K. Jayakody

论文摘要

第五代和无线通信将支持极大的服务,并使用诸如大规模连接,低延迟和高传输速率等需求。网络切片已被视为满足这些不同需求的有效技术。在本文中,我们提出了一个基于无线电访问网络(RAN)切片的动态虚拟资源分配方案,以确保服务质量(QOS)。为了在延迟约束下的最大加权和传输速率性能,将亚通道分配和功率控制的关节优化问题作为无限 - 霍尼的平均奖励约束马尔可夫决策过程(CMDP)问题。基于等效的Bellman方程,最佳控制策略首先由值迭代算法得出。但是,最佳政策遭受了众所周知的差异性问题。为了解决此问题,采用了线性值函数近似(近似动态编程)。然后,将亚通道分配Q因子分解为每片Q因子。此外,使用在线随机学习算法更新了Q因子和拉格朗日乘数。最后,模拟结果表明,与基线方案相比,所提出的算法可以满足延迟要求并提高用户传输速率。

The fifth generation and beyond wireless communication will support vastly heterogeneous services and use demands such as massive connection, low latency and high transmission rate. Network slicing has been envisaged as an efficient technology to meet these diverse demands. In this paper, we propose a dynamic virtual resources allocation scheme based on the radio access network (RAN) slicing for uplink communications to ensure the quality-of-service (QoS). To maximum the weighted-sum transmission rate performance under delay constraint, formulate a joint optimization problem of subchannel allocation and power control as an infinite-horizon average-reward constrained Markov decision process (CMDP) problem. Based on the equivalent Bellman equation, the optimal control policy is first derived by the value iteration algorithm. However, the optimal policy suffers from the widely known curse-of-dimensionality problem. To address this problem, the linear value function approximation (approximate dynamic programming) is adopted. Then, the subchannel allocation Q-factor is decomposed into the per-slice Q-factor. Furthermore, the Q-factor and Lagrangian multipliers are updated by the use of an online stochastic learning algorithm. Finally, simulation results reveal that the proposed algorithm can meet the delay requirements and improve the user transmission rate compared with baseline schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源